Поиск в словарях
Искать во всех

Энциклопедия Кольера - гидроаэромеханика анализ течения жидкостей и газов

 

Гидроаэромеханика анализ течения жидкостей и газов

гидроаэромеханика анализ течения жидкостей и газов
К статье ГИДРОАЭРОМЕХАНИКА Картина течения. Первый шаг в решении любой задачи о движении жидкости или газа - наглядное представление картины течения. Можно представить себе ряд тонких струек (линий) движущейся среды так, что в каждой своей точке они совпадают с направлением течения. Такие линии называются линиями тока. Если течение установившееся, т.е. картина течения со временем не меняется, то линии тока совпадают с траекториями частиц текущей среды. Течение называется равномерным, если все линии тока прямолинейны и параллельны (рис.1). Течение через водослив является установившимся - все линии тока в нем совпадают с траекториями частиц, взвешенных в воде. Но такое течение нельзя считать равномерным, поскольку линии тока искривлены и сгущаются при переходе через гребень водослива. Течение, вызываемое движущимся телом, например кораблем, тоже неравномерно, так как корабль все время меняет свое положение и траектории частиц воды лишь кратковременно совпадают с линиями тока (рис.2). Движение такого вида, неустановившееся и неравномерное, представляется очень сложным для наблюдателя. Но оно выглядело бы гораздо проще, если бы наблюдатель мог двигаться с той же скоростью, что и корабль, так как тогда он видел бы движение, по крайней мере перед кораблем, в установившихся условиях и линии тока совпадали бы с траекторией движения. Такое упрощение задачи основано на представлении об относительном движении, которое часто оказывается полезным в механике. Если бы к тому же течение зависело только от формы границы, в данном случае от формы передней части корабля, то линии тока можно было бы построить у контура этой границы с использованием графических, механических или электрических процессов, описываемых математическим соотношением между этим контуром и картиной потока. Уравнение неразрывности. Соотношение между скоростью течения, объемным расходом среды и расстоянием между линиями тока называется уравнением неразрывности. Это уравнение выражает один из основных законов гидроаэромеханики, согласно которому объемный расход во всякой трубке тока, ограниченной соседними линиями тока, должен быть в любой момент времени одинаков во всех ее поперечных сечениях. Поскольку объемный расход Q равен произведению скорости текущей среды V на площадь A поперечного сечения трубки тока, уравнение неразрывности имеет следующий вид: Q = V1A1 = V2A2. Поэтому там, где сечение велико и линии тока разрежены, скорость должна быть мала, и наоборот. (Все три части этого двойного равенства должны выражаться в одной и той же системе единиц. Так, если величина Q выражена в м3/с, то скорость V должна выражаться в м/с, а площадь A - в м2.) Закон сохранения энергии. Если текущая среда движется с ускорением, то, согласно законам Ньютона, это означает, что на среду действует некая сила в направлении ускорения. Сила, действующая на единицу объема, должна быть равна произведению ускорения на массу этой единицы объема. Таким образом, динамика течения определяется по крайней мере одной характеристикой среды - плотностью ? и по крайней мере одним видом сил, действующих в среде, - обусловленных разностью давлений в двух соседних точках линии тока. Если плотность - единственная характеристика, которую нужно учитывать, а изменения давления от точки к точке в среде - единственный вид действующих сил, то можно написать уравнение второго закона Ньютона, которое связывает плотность с изменением давления, в довольно сложной дифференциальной форме т.н. уравнения Эйлера. Будучи проинтегрировано вдоль трубки тока, оно дает очень простую и полезную формулу: Это уравнение выражает тот факт, что изменение скорости в промежутке между двумя поперечными сечениями трубки тока в условиях неравномерного течения сопровождается соответствующим изменением давления, причем давление понижается с увеличением скорости, и наоборот. Поскольку левая часть уравнения выражает работу, совершаемую над единичным объемом среды при перемещении на единичное расстояние, а правая - соответствующее изменение его кинетической энергии, это уравнение представляет собой закон сохранения энергии. Оно применимо только в случае установившегося течения. Закон сохранения количества движения. Несколько иной путь решения того же самого дифференциального уравнения приводит к столь же простой и полезной формуле Fx = Q? (V2 - V1)x, которая показывает, что внешняя сила, действующая на участок трубки тока в заданном направлении (скажем, в направлении x), пропорциональна изменению скорости в этом направлении. Поскольку в правой части стоит скорость изменения количества движения среды под действием этой силы, данное уравнение выражает закон сохранения количества движения (импульса). Оно позволяет объяснить принцип реактивного движения. Если некое тело выбрасывает высокоскоростную струю газа (или жидкости), то эта струя действует на тело с силой F, равной изменению ее количества движения, что и заставляет его двигаться. ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ИЗМЕНЕНИЕ ТЕЧЕНИЯ Уравнение неразрывности, законы сохранения энергии и количества движения в представленном выше простом виде позволяют приближенно решать многие практические задачи, связанные с течением. К ним относятся задачи о силах воздействия струи на обтекаемое тело (крыло, руль, лопасть), о скорости истечения из сопел и диафрагм на концах напорных линий, о соотношении между давлением и скоростью для таких измерительных устройств, как расходометр Вентури и трубка Пито, и о реакции текущей среды на изгибы трубопровода и на изменения площади его поперечного сечения. В каждой такой задаче предполагается, что картина течения полностью определяется формой его границ; причиной изменения картины течения может быть влияние таких факторов, как вес, вязкость текущей среды, завихрения и сжимаемость. Вес. Уравнение Бернулли. Самая простая после плотности характеристика текущей среды - это, пожалуй, удельный вес ?, т.е. вес единицы объема среды. (Отношение ? к ? равно ускорению силы тяжести g.) Если ввести эту величину в основные уравнения движения, то уравнения непрерывности и закона сохранения количества движения не изменятся, а уравнение закона сохранения энергии примет следующий вид: Это т.н. уравнение Бернулли. Все его слагаемые имеют размерность длины; первое слагаемое в обеих частях равенства называется скоростным напором, а второе - гидростатическим напором; z - высота расположения трубки тока в данной точке, измеренная относительно некоего уровня отсчета (рис.3). Согласно уравнению Бернулли, в случае установившегося течения, для которого не имеют существенного значения все другие характеристики текущей среды, кроме плотности (удельного веса), полный напор одинаков во всех поперечных сечениях трубки тока. Если к отверстию в стенке трубы присоединить манометрическую трубку, то жидкость в такой трубке поднимется на высоту, равную гидростатическому напору. Если манометрическую трубку выставить навстречу потоку, то жидкость в манометре поднимется на дополнительную высоту, равную скоростному напору. Трубка, имеющая одновременно торцевое и боковые манометрические отверстия, называется трубкой Пито (рис.4) и используется для определения скорости течения по измеренному скоростному напору. Трубки Пито входят в комплект измерительного оборудования всех самолетов, а также широко применяются для измерений скорости течения в трубопроводах, вентиляционных воздуховодах, в аэро- и гидродинамических трубах. Если скорость течения равна нулю (т.е. среда не движется), то уравнение Бернулли сводится к простому уравнению гидростатики Согласно этому уравнению, увеличению высоты в неподвижной среде жидкости или газа соответствует равное уменьшение гидростатического напора. Поэтому давление в любой точке неподвижной жидкости равно глубине этой точки под свободной поверхностью, умноженной на удельный вес жидкости. На основе этого соотношения вычисляется давление жидкости на стенки резервуаров, а также проводится анализ плавучести и остойчивости морских и речных судов. В тех случаях, когда скорость течения отлична от нуля, уравнение Бернулли совместно с уравнениями неразрывности и закона сохранения количества движения позволяет решать практически важные задачи - о расходе среды, текущей через измерительные диафрагмы, поверх измерительных и водосбросных водосливов и под затворы шлюзовых галерей; о траектории струи жидкости; о форме, скорости и силе волн, действующих на суда и волноломы. Хотя в таких задачах обычно рассматривается течение воды под атмосферным слоем воздуха, аналогичные процессы гравитационного характера имеют место в случае течения более холодной (и, следовательно, более плотной) воды под более теплой, как и других жидкостей и газов разной плотности. Таким образом, водным потокам в реках аналогичны океанские течения и ветры, поскольку все гравитационные явления подчиняются одним и тем же законам гидроаэромеханики. Гравитационное моделирование. Число Фруда. Хотя многие задачи такого рода решаются с приемлемой точностью, существует много других сложных задач, аналитическое решение которых пока невозможно. Тем не менее удовлетворительное решение ряда таких задач можно находить путем моделирования с использованием теории подобия. Влияние силы тяжести на картину потока характеризуется безразмерной величиной (критерием подобия), составленной из некой характерной скорости V, характерной длины L, разности ?? удельных весов верхней и нижней текущих сред и плотности ? одной из них: Эта величина называется числом Фруда. Очевидно, что в случае течения воды под атмосферным воздухом мы имеем просто . Подобие будет обеспечено только в том случае, если число Фруда для модели равно числу Фруда для реального объекта (т.е., например, скорость модели судна должна быть уменьшена пропорционально квадратному корню из уменьшения размера). Такого рода экспериментальные исследования уменьшенных моделей - обычная практика при проектировании судов и речных гидротехнических сооружений; более того, в настоящее время методы моделирования распространяются на аналогичные гравитационные задачи метеорологии и океанографии. Вязкость. Формулы Пуазейля и Стокса. Задачи, в которых существенна только динамическая вязкость ?, в ряде частных случаев могут быть полностью решены аналитически, если исходить из того, что скорость вязкой текучей среды в точке соприкосновения с твердой границей такая же, как и скорость границы, т.е. равна нулю, если та неподвижна. Типичные примеры такого решения - формула Пуазейля для перепада давления, необходимого для поддержания вязкого течения в малой трубке постоянного диаметра D длиной L: и формула Стокса для силы сопротивления вязкой среды медленному движению очень малого шарика диаметром D: F = 3??VD. (Величина ? для воздуха равна приблизительно 0,018?10-3, для воды 10?3 и для глицерина 1500 ?10-3 Па?с.) Число Рейнольдса. Во всех рассмотренных выше случаях плотность текучей среды, очевидно, не играет роли, поскольку силы, вызывающие ускорение среды, либо отсутствуют, либо пренебрежимо малы по сравнению с силами вязкого сдвига. Но если бы труба была большой длины и переменного диаметра, а шарик двигался с большой скоростью, то эффекты, связанные с ускорением, были бы значительны и плотность в уравнениях движения нельзя было бы опускать. Однако тогда эти уравнения были бы слишком сложны, а потому снова приходится прибегать к критерию подобия, характеризующему влияние вязкости на картину течения. Этот критерий имеет вид и называется числом Рейнольдса. Оно играет такую же роль в моделировании влияния вязкости, что и число Фруда при моделировании гравитационных эффектов, а потому служит основой опытов, проводимых в аэродинамических трубах с моделями самолетов, и градуировок расходомеров для жидкостей разной вязкости - в общем, при исследовании всех видов течений по трубам и с обтеканием тел во всех случаях, когда доминирует влияние вязкости. Если равенство чисел Фруда для модели и натурного объекта, как мы видели, требовало уменьшения скорости модели в
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):